airpack.tf2.fileio
¶
Module Contents¶
-
airpack.tf2.fileio.
bytes2signal
(inset, dtype=tf.int16, scalar=1.0)¶ Inputs a set of raw data (bytes), decodes it to
dtype
. It then normalizes to be between(-1, 1)
if the data type is an integer.- Parameters
inset (bytes) – Inputs a set of raw data (bytes)
dtype (tensorflow.dtypes.DType) – dtype to convert raw data to (tf.int16 or tf.float32)
scalar (float) – Scalar gain value (linear units)
- Returns
A Tensor object storing the decoded bytes.
- Return type
tensorflow.Tensor
-
airpack.tf2.fileio.
pars_folder
(datapath, shuffle=True)¶ Recursively find all files with the “.bin” extension in the data path and shuffle the data set if requested.
Note
The numeric label is the name of the bottom-most folder in the tree of data: e.g., for file ‘data/train/x/y/file.bin’, the label is ‘y’.
- Parameters
datapath (Union[str, os.PathLike]) – Directory that the data resides in
shuffle (bool) – Shuffle the data set if requrested
- Returns
(filenames, labels)
- Return type
Tuple[List[str], List[int]]
-
airpack.tf2.fileio.
datareader
(data_folder, input_len, output_len, batch_size, dtype=tf.dtypes.DType, nthread=4, buffer_size=16, interweaved=True, scalar=1.0)¶ Data pipeline optimized for reading signal data (I/Q) and feeding it to a deep learning model.
- Parameters
data_folder (Union[str, os.PathLike]) – Directory that the data resides in
input_len (int) – Number of complex samples as the input to the neural network.
output_len (int) – Number of labels possible (defines output layer length)
batch_size (int) – Number of batches to read for each iteration
dtype – dtype of the data in datafiles
nthread (int) – Number of CPU threads to use when pipelining data reads
buffer_size (int) – Buffer size used for shuffling the data
interweaved (bool) – Is data interweaved I/Q or not
scalar (float) – scalar multiplied by signal for data normalization
- Returns
The tensorflow Dataset object
- Return type
tensorflow.data.Dataset