airpack_scripts.pytorch.run_inference
¶
Module Contents¶
-
airpack_scripts.pytorch.run_inference.
get_file_pars
(filename)¶ File names are of the format: key0=val0_key1=val1_key2=val2.bin so that we can easily parse the file name to get the file parameters, e.g., snr=10. This will allow us to only plot the desired SNR values.
- Parameters
filename (Union[get_file_pars.str, os.PathLike]) – filename string to parse
- Returns
Dictionary of file parameters
- Return type
Dict[get_file_pars.str, Any]
-
airpack_scripts.pytorch.run_inference.
setup_inference_function
(saver_path, file_name='saved_model.onnx')¶ Sets up a tensorflow session from an onnx file to perform inference saved_model :param saver_path: Path to onnx file :param file_name: onnx file name :return: Callable inference function
- Parameters
saver_path (pathlib.Path) –
file_name (str) –
- Return type
Callable[[numpy.ndarray], List[float]]
-
airpack_scripts.pytorch.run_inference.
infer
(data_folder, plot_snr=12, fs=31250000.0)¶ This script will re-initialize a trained PyTorch model for inference. It will look through the test_data_folder and find one signal file for each label and for the SNR value defined by plot_snr.
Note
For the provided data set, plot_snr may range from -5 to 20 dB and the accuracy of the trained model may be shown to go down as the SNR is decreased.
- Parameters
data_folder (Union[str, os.PathLike]) – Location of data
plot_snr (int) – Define desired SNR to plot
fs (float) – Define sample rate
- Returns
Inference results
- Return type
List[float]